63 research outputs found

    Poisson-event-based analysis of cell proliferation.

    Get PDF
    A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture

    Physical activity, motor competence and movement and gait quality: A principal component analysis

    Get PDF
    ObjectiveWhile novel analytical methods have been used to examine movement behaviours, to date, no studies have examined whether a frequency-based measure, such a spectral purity, is useful in explaining key facets of human movement. The aim of this study was to investigate movement and gait quality, physical activity and motor competence using principal component analysis.MethodsSixty-five children (38 boys, 4.3 ± 0.7y, 1.04 ± 0.05 m, 17.8 ± 3.2 kg, BMI; 16.2 ± 1.9 kg∙m2) took part in this study. Measures included accelerometer-derived physical activity and movement quality (spectral purity), motor competence (Movement Assessment Battery for Children 2nd edition; MABC2), height, weight and waist circumference. All data were subjected to a principal component analysis, and the internal consistency of resultant components were assessed using Cronbach's alpha.ResultsTwo principal components, with excellent internal consistency (Cronbach α >0.9) were found; the 1st principal component, termed “movement component”, contained spectral purity, traffic light MABC2 score, fine motor% and gross motor% (α = 0.93); the 2nd principal component, termed “anthropometric component”, contained weight, BMI, BMI% and body fat% (α = 0.91).ConclusionThe results of the present study demonstrate that accelerometric analyses can be used to assess motor competence in an automated manner, and that spectral purity is a meaningful, indicative, metric related to children's movement quality

    Profiling Movement Quality Characteristics of Children (9-11y) During Recess

    Get PDF
    Introduction. Frequency spectrum characteristics derived from raw accelerometry, such as spectral purity, have the potential to reveal detailed information about children’s movement quality, but remain unexplored in children’s physical activity. The aim of this study was to investigate and profile children’s recess physical activity and movement quality using a novel analytical approach. Materials and Methods. A powered sample of twenty-four children (18 boys) (10.5±0.6y, 1.44±0.09m, 39.6±9.5kg, body mass index; 18.8±3.1 kg.m2) wore an ankle-mounted accelerometer during school recess, for one school-week. Hierarchical clustering, Spearman’s rho and the Mann-Whitney U test were used to assess relationships between characteristics, and to assess inter-day differences. Results. There were no significant inter-day differences found for overall activity (P>0.05), yet significant differences were found for spectral purity derived movement quality (P 0.05), sin embargo, se encontraron diferencias significativas para la calidad del movimiento derivado de la pureza espectral (P <0.001). La actividad global se agrupó jerárquicamente y se correlacionó positivamente con la pureza espectral (P <0,05). Discusión. Este es el primer estudio que informa la pureza espectral de la calidad del movimiento derivado de la actividad física de los niños, en un entorno no controlado y nuestros resultados destacan el potencial para la investigación futura

    Surface Plasmon Mediated Emission in Resonant-Cavity Light-Emitting Diodes

    Get PDF
    In this letter the authors describe a particular method to outcouple in air, via surface plasmons (SPs), optical radiation trapped in leaky waveguide modes of a resonant-cavity light-emitting diode. The deposition of a thin metal layer on the device surface creates SP modes at both the metal-dielectric interfaces. The successive overcoating of the metal layer with a thin polymer film and the roughening of its surface produce outcoupling of radiation trapped in leaky modes via SP modes. Experimental results for polarization resolved reflectivity and emission spectra are in excellent agreement with theoretical predictions

    Flow-Based Cytometric Analysis of Cell Cycle via Simulated Cell Populations

    Get PDF
    We present a new approach to the handling and interrogating of large flow cytometry data where cell status and function can be described, at the population level, by global descriptors such as distribution mean or co-efficient of variation experimental data. Here we link the “real” data to initialise a computer simulation of the cell cycle that mimics the evolution of individual cells within a larger population and simulates the associated changes in fluorescence intensity of functional reporters. The model is based on stochastic formulations of cell cycle progression and cell division and uses evolutionary algorithms, allied to further experimental data sets, to optimise the system variables. At the population level, the in-silico cells provide the same statistical distributions of fluorescence as their real counterparts; in addition the model maintains information at the single cell level. The cell model is demonstrated in the analysis of cell cycle perturbation in human osteosarcoma tumour cells, using the topoisomerase II inhibitor, ICRF-193. The simulation gives a continuous temporal description of the pharmacodynamics between discrete experimental analysis points with a 24 hour interval; providing quantitative assessment of inter-mitotic time variation, drug interaction time constants and sub-population fractions within normal and polyploid cell cycles. Repeated simulations indicate a model accuracy of ±5%. The development of a simulated cell model, initialized and calibrated by reference to experimental data, provides an analysis tool in which biological knowledge can be obtained directly via interrogation of the in-silico cell population. It is envisaged that this approach to the study of cell biology by simulating a virtual cell population pertinent to the data available can be applied to “generic” cell-based outputs including experimental data from imaging platforms

    A transfer function approach to measuring cell inheritance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inheritance of cellular material between parent and daughter cells during mitosis is highly influential in defining the properties of the cell and therefore the population lineage. This is of particular relevance when studying cell population evolution to assess the impact of a disease or the perturbation due to a drug treatment. The usual technique to investigate inheritance is to use time-lapse microscopy with an appropriate biological marker, however, this is time consuming and the number of inheritance events captured are too low to be statistically meaningful.</p> <p>Results</p> <p>Here we demonstrate the use of a high throughput fluorescence measurement technique e.g. flow cytometry, to measure the fluorescence from quantum dot markers which can be used to target particular cellular sites. By relating, the fluorescence intensity measured between two time intervals to a transfer function we are able to deconvolve the inheritance of cellular material during mitosis. To demonstrate our methodology we use CdTe/ZnS quantum dots to measure the ratio of endosomes inherited by the two daughter cells during mitosis in the U2-OS, human osteoscarcoma cell line. The ratio determined is in excellent agreement with results obtained previously using a more complex and computational intensive bespoke stochastic model.</p> <p>Conclusions</p> <p>The use of a transfer function approach allows us to utilise high throughput measurement of large cell populations to derive statistically relevant measurements of the inheritance of cellular material. This approach can be used to measure the inheritance of organelles, proteins etc. and also particles introduced to cells for drug delivery.</p

    DEVELOPING METHODS TO ASSESS THE RELATIONSHIP BETWEEN ERGOMETER AND ON-WATER ROWING PERFORMANCE FROM INDEPENDENT DATASETS

    Get PDF
    Rowing ergometers are often used by internationally competitive athletes alongside on-water rowing. This study proposes methods to develop a generalisable relationship between maximal effort 2000 m ergometer and on-water rowing performance using independent datasets. Ergometer times for 2000 m tests (n = 153) and 2000 m on-water times from international races (n = 139) were collated. Percentiles from the raw data and fitted probability density functions were mapped to develop a generalisable performance relationship. Bootstrapping was utilised to estimate the uncertainty in the percentile mappings. When built on a larger sample of athletes, this approach could be useful to identify athletes who under or overperform on water compared to ergometers, and this could provide valuable context for future biomechanical investigations of rowing technique
    corecore